Основные ошибки при химической промывке жаротрубных котлов

А.В. Колосов, директор ООО «Инновации и Сервис»

Практика показала, что существуют типичные ошибки, допускаемые при химической промывке жаротрубных котлов. На основе представленных данных заказчик работ по химической промывке всегда сможет оценить ход выполнения работ и вовремя принять корректирующие меры.

1. Не производилось вскрытие котла перед промывкой, нет данных о толщине и химическом составе накипи

Одна из наиболее важных ошибок, которая приводит к неудовлетворительному результату химической промывки жаротрубных котлов – отсутствие исходных данных о толщине и химическом составе накипи. Эта ситуация возникает по ряду причин:

- 1. У заказчика нет возможности произвести остановку котла для его внутреннего осмотра и взятия образцов накипи. Это связано с круглосуточным режимом работы предприятий в ряде отраслей промышленности.
- 2. Заказчик не счел нужным осматривать котел и брать образцы накипи.

К чему приводит отсутствие данных о количестве и химическом составе накипи? В данной ситуации исполнитель не представляет:

- Какое количество промывочного реагента требуется для полного растворения накипи?
- Насколько эффективно будет реагировать промывочный реагент с накипью?
- Какие параметры промывочного раствора наиболее эффективны?
- Какое количество циклов промыв-ки потребуется?

Такая ситуация чревата возможными проблемами для обоих сторон. Исполнитель может неточно рассчитать требуемое количество реагента и его параметры.

Заказчик может не получить требуемого качества химической промывки котла.

Таким образом, перед химической промывкой жаротрубного котла, должны быть получены следующие данные:

- фото внутренних поверхностей нагрева котла:
 - толщина накипи;
- цвет накипи, описание механических свойств;
- качественный и количественный химический анализ накипи.

Только на основании этих данных исполнитель может корректно провести подбор количества промывочного реагента, рассчитать стоимость выполнения работ.

Рис. 1. Накипь в котле LNE Compact 12.0

Рис. 2. Образцы накипи из котла LNE Compact 12.0

Приведем пример получения исходных данных о накипи и сформулированных на основании этого выводах. Первоначально, наш заказчик предоставил фотографию внутренних поверхностей нагрева котла. Котел жаротрубного типа, LNE Compact 12.0, водяной объем 32,7 м³. На рис. 1 видно, что толщина накипи на дымогарных трубах превышает 3 мм. Однако на трубной доске накипь практически отсутствует. Вероятно, потребуются два цикла химической промывки, так как за один раз накипь может полностью не удалиться.

Во время посещения объекта специалистами компании «Инновации и Сервис» были взяты образцы накипи. Образцы представляли собой плотные отложения черного цвета. Образцы были отданы в лабораторию, где был получен количественный и качественный химический состав накипи (рис. 2).

Химический анализа накипи показал наличие в ней следующих элемен-

Результаты анализа накипи

Наименование элемента	CaO	MgO	Al ₂ O ₃	SiO ₂	FeO	Fe ₂ O ₃
Содержание элемента в %	4,20	6,30	3,72	1,64	5,47	78,2

тов - см. таблицу. На основании этих данных были подобраны параметры промывочного раствора на основе реагента Кратол К - концентрация и температура. Образцы накипи растворили в промывочном растворе, при этом степень растворения достигла 97%, что является очень хорошим показателем.

Таким образом, перед химической промывкой жаротрубного котла целесообразно получить данные о количестве и химическом составе накипи.

2. Не согласована программа химической промывки и подключение оборудования

Согласование программы химической промывки важно в том случае, если работы выполняются на котлах большой мощности. В этом случае важно сформулировать требования для подключения промывочного оборудования, согласовать этапы выполнения работ и скоординировать порядок действия заказчика и исполнителя. Отсутствие предварительного согласования программы химической промывки может привести к затягиванию сроков выполнения работ, увеличению трудоемкости выполнения операций. Ознакомиться с Программой химической промывки жаротрубного котла, разработанной ООО «Инновации и Евросервис», вы можете по ссылке на сайте inev.ru.

3. Химическая промывка котла производится без циркуляции

В данном случае исполнитель разбавляет в котле концентрат промывочного реагента, производит огневой обогрев котла и оставляет полученный раствор в котле. Временной интервал выбирается произвольно и может составлять от нескольких часов до нескольких суток, в зависимости от типоразмера котла и толщины накипи в нем.

По истечении указанного интервала времени исполнитель сливает промывочный раствор и выполняет промывку

Рис. 3. Химический бустер малой мощности, используемый для химической промывки котла LOOS

котла водой. При этом промывочный раствор может даже не прореагировать и сливается с остаточной кислотностью.

Отсутствие циркуляции промывочного раствора в котле формирует области с пониженной кислотностью у поверхности труб и повышенной кислотностью в толще воды. Эти области не перемешиваются между собой, кислотность раствора не выравнивается по объему. Это приводит к тому, что накипь растворяется не полностью. Кроме того, отсутствие циркуляции промывочного раствора внутри котла делает невозможным механическое отделение частиц накипи, за счет гидродинамического воздействия потока жидкости.

4. Характеристики химического насоса не соответствуют водяному объему котла

Зачастую при химической промывке жаротрубных котлов используются маломощные насосы, которые не обеспечивают требуемой скорости течения жидкости в котле и кратности обмена промывочного реагента.

Посмотрите на рис. 3. Небольшой насос подключается к прямой и обратной магистрали котла. Напор насоса - около 20 м, подача - не более 3 м3/ч. При таких параметрах напор воды из насоса, практически без давления, попадает на жаровую трубу в задней части котла и рассеивается массой воды. При этом жидкость в котле полностью не перемешивается, передняя и задняя трубные доски котла не омываются циркуляцией. Промывочный раствор в этих местах не обновляется, реакция с накипью прекрашается.

5. Не выдержана концентрация промывочного раствора

Часто при отсутствии данных о количестве накипи используется недостаточное количество промывочного реагента. Это приводит к тому, что накипь удаляется не полностью.

Для оценки используемого количества промывочного реагента целесообразно знать, что для растворения 1 кг накипи требуется 1,5-2 кг 100%го вещества-реагента. Это относится практически ко всем химическим средствам, используемым для химической промывки. Это означает, что если в котле содержится, например, 100 кг накипи, то для подготовки промывочного раствора потребуется 200 кг реагента Кратол К.

Расчет массы накипи в котле производится по формуле: $m = h \times S \times p$, где: m - масса накипи в кг; h - толщина накипи, в метрах; S - площадь поверхности нагрева котла, м²; р – плотность накипи, равная 500 кг/м³.

Например, для котла с толщиной накипи 5 мм и площадью нагрева 300 м² получаем, что в котле содержится 750 кг накипи. Для гарантированного ее удаления потребуется около 1500 кг реагента Кратол К.

В статье были перечислены основные ошибки, которые могут происходить при химической промывке жаротрубных котлов. Изучите эти нехитрые факторы, внимательно контролируйте ход выполнения работ и тогда химическая промывка будет выполнена профессионально и качественно. •